【c语言学习笔记十四】链表知识总结

1、什么是结点?  

采用动态分配的办法为一个结构分配内存空间,每一次分配一块空间可用来存放一个学生的数据,我们可称之为一个结点。

有多少个学生就应该申请分配多少块内存空间,也就是说要建立多少个结点。当然用结构数组也可以完成上述工作,但如果预先不能准确把握学生人数,也就无法确定数组大小。而且当学生留级、退学之后也不能把该元素占用的空间从数组中释放出来。

用动态存储的方法可以很好地解决这些问题。有一个学生就分配一个结点,无须预先确定学生的准确人数,某学生退学,可删去该结点,并释放该结点占用的存储空间。从而节约了宝贵的内存资源。另一方面,用数组的方法必须占用一块连续的内存区域。而使用动态分配时,每个结点之间可以是不连续的(结点内是连续的)。结点之间的联系可以用指针实现。 即在结点结构中定义一个成员项用来存放下一结点的首地址,这个用于存放地址的成员,常把它称为指针域。

2、什么是链表  

在第一个结点的指针域内存入第二个结点的首地址,在第二个结点的指针域内又存放第三个结点的首地址,如此串连下去直到最后一个结点。最后一个结点因无后续结点连接,其指针域可赋为0。这样一种连接方式,在数据结构中称为“链表”

第0个结点称为头结点,它存放有第一个结点的首地址,它没有数据,只是一个指针变量。以下的每个结点都分为两个域,一个是数据域,存放各种实际的数据,如学号num,姓名name,性别sex和成绩score等。另一个域为指针域,存放下一结点的首地址。链表中的每一个结点都是同一种结构类型。

3、链表的操作

#include “stdafx.h”
#include “stdio.h”
#include <stdlib.h>
#include “string.h”

typedef int elemType ;

/************************************************************************/
/* 以下是关于线性表链接存储(单链表)操作的18种算法 */

/* 1.初始化线性表,即置单链表的表头指针为空 */
/* 2.创建线性表,此函数输入负数终止读取数据*/
/* 3.打印链表,链表的遍历*/
/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为一个空表 */
/* 5.返回单链表的长度 */
/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */
/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停止程序运行 */
/* 8.从单链表中查找具有给定值x的第一个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */
/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */
/* 10.向单链表的表头插入一个元素 */
/* 11.向单链表的末尾添加一个元素 */
/* 12.向单链表中第pos个结点位置插入元素为x的结点,若插入成功返回1,否则返回0 */
/* 13.向有序单链表中插入元素x结点,使得插入后仍然有序 */
/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停止程序运行 */
/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停止程序运行 */
/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停止程序运行 */
/* 17.从单链表中删除值为x的第一个结点,若删除成功则返回1,否则返回0 */
/* 18.交换2个元素的位置 */
/* 19.将线性表进行快速排序 */

/************************************************************************/
typedef struct Node{ /* 定义单链表结点类型 */
elemType element;
struct Node *next;
}Node;

/* 1.初始化线性表,即置单链表的表头指针为空 */
void initList(Node **pNode)
{
*pNode = NULL;
printf(“initList函数执行,初始化成功\n”);
}

/* 2.创建线性表,此函数输入负数终止读取数据*/
Node *creatList(Node *pHead)
{
Node *p1;
Node *p2;

p1=p2=(Node *)malloc(sizeof(Node)); //申请新节点
if(p1 == NULL || p2 ==NULL)
{
printf(“内存分配失败\n”);
exit(0);
}
memset(p1,0,sizeof(Node));

scanf(“%d”,&p1->element); //输入新节点
p1->next = NULL; //新节点的指针置为空
while(p1->element > 0) //输入的值大于0则继续,直到输入的值为负
{
if(pHead == NULL) //空表,接入表头
{
pHead = p1;
}
else
{
p2->next = p1; //非空表,接入表尾
}
p2 = p1;
p1=(Node *)malloc(sizeof(Node)); //再重申请一个节点
if(p1 == NULL || p2 ==NULL)
{
printf(“内存分配失败\n”);
exit(0);
}
memset(p1,0,sizeof(Node));
scanf(“%d”,&p1->element);
p1->next = NULL;
}
printf(“creatList函数执行,链表创建成功\n”);
return pHead; //返回链表的头指针
}

/* 3.打印链表,链表的遍历*/
void printList(Node *pHead)
{
if(NULL == pHead) //链表为空
{
printf(“PrintList函数执行,链表为空\n”);
}
else
{
while(NULL != pHead)
{
printf(“%d “,pHead->element);
pHead = pHead->next;
}
printf(“\n”);
}
}

/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为一个空表 */
void clearList(Node *pHead)
{
Node *pNext; //定义一个与pHead相邻节点

if(pHead == NULL)
{
printf(“clearList函数执行,链表为空\n”);
return;
}
while(pHead->next != NULL)
{
pNext = pHead->next;//保存下一结点的指针
free(pHead);
pHead = pNext; //表头下移
}
printf(“clearList函数执行,链表已经清除\n”);
}

/* 5.返回单链表的长度 */
int sizeList(Node *pHead)
{
int size = 0;

while(pHead != NULL)
{
size++; //遍历链表size大小比链表的实际长度小1
pHead = pHead->next;
}
printf(“sizeList函数执行,链表长度 %d \n”,size);
return size; //链表的实际长度
}

/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */
int isEmptyList(Node *pHead)
{
if(pHead == NULL)
{
printf(“isEmptyList函数执行,链表为空\n”);
return 1;
}
printf(“isEmptyList函数执行,链表非空\n”);

return 0;
}

/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停止程序运行 */
elemType getElement(Node *pHead, int pos)
{
int i=0;

if(pos < 1)
{
printf(“getElement函数执行,pos值非法\n”);
return 0;
}
if(pHead == NULL)
{
printf(“getElement函数执行,链表为空\n”);
return 0;
//exit(1);
}
while(pHead !=NULL)
{
++i;
if(i == pos)
{
break;
}
pHead = pHead->next; //移到下一结点
}
if(i < pos) //链表长度不足则退出
{
printf(“getElement函数执行,pos值超出链表长度\n”);
return 0;
}

return pHead->element;
}

/* 8.从单链表中查找具有给定值x的第一个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */
elemType *getElemAddr(Node *pHead, elemType x)
{
if(NULL == pHead)
{
printf(“getElemAddr函数执行,链表为空\n”);
return NULL;
}
if(x < 0)
{
printf(“getElemAddr函数执行,给定值X不合法\n”);
return NULL;
}
while((pHead->element != x) && (NULL != pHead->next)) //判断是否到链表末尾,以及是否存在所要找的元素
{
pHead = pHead->next;
}
if((pHead->element != x) && (pHead != NULL))
{
printf(“getElemAddr函数执行,在链表中未找到x值\n”);
return NULL;
}
if(pHead->element == x)
{
printf(“getElemAddr函数执行,元素 %d 的地址为 0x%x\n”,x,&(pHead->element));
}

return &(pHead->element);//返回元素的地址
}

/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */
int modifyElem(Node *pNode,int pos,elemType x)
{
Node *pHead;
pHead = pNode;
int i = 0;

if(NULL == pHead)
{
printf(“modifyElem函数执行,链表为空\n”);
}
if(pos < 1)
{
printf(“modifyElem函数执行,pos值非法\n”);
return 0;
}
while(pHead !=NULL)
{
++i;
if(i == pos)
{
break;
}
pHead = pHead->next; //移到下一结点
}
if(i < pos) //链表长度不足则退出
{
printf(“modifyElem函数执行,pos值超出链表长度\n”);
return 0;
}
pNode = pHead;
pNode->element = x;
printf(“modifyElem函数执行\n”);

return 1;
}

/* 10.向单链表的表头插入一个元素 */
int insertHeadList(Node **pNode,elemType insertElem)
{
Node *pInsert;
pInsert = (Node *)malloc(sizeof(Node));
memset(pInsert,0,sizeof(Node));
pInsert->element = insertElem;
pInsert->next = *pNode;
*pNode = pInsert;
printf(“insertHeadList函数执行,向表头插入元素成功\n”);

return 1;
}

/* 11.向单链表的末尾添加一个元素 */
int insertLastList(Node **pNode,elemType insertElem)
{
Node *pInsert;
Node *pHead;
Node *pTmp; //定义一个临时链表用来存放第一个节点

pHead = *pNode;
pTmp = pHead;
pInsert = (Node *)malloc(sizeof(Node)); //申请一个新节点
memset(pInsert,0,sizeof(Node));
pInsert->element = insertElem;

while(pHead->next != NULL)
{
pHead = pHead->next;
}
pHead->next = pInsert; //将链表末尾节点的下一结点指向新添加的节点
*pNode = pTmp;
printf(“insertLastList函数执行,向表尾插入元素成功\n”);

return 1;
}

/* 12.向单链表中第pos个结点位置插入元素为x的结点,若插入成功返回1,否则返回0 */

/* 13.向有序单链表中插入元素x结点,使得插入后仍然有序 */
/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停止程序运行 */
/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停止程序运行 */
/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停止程序运行 */
/* 17.从单链表中删除值为x的第一个结点,若删除成功则返回1,否则返回0 */
/* 18.交换2个元素的位置 */
/* 19.将线性表进行快速排序 */

/******************************************************************/
int main()
{
Node *pList=NULL;
int length = 0;

elemType posElem;

initList(&pList); //链表初始化
printList(pList); //遍历链表,打印链表

pList=creatList(pList); //创建链表
printList(pList);

sizeList(pList); //链表的长度
printList(pList);

isEmptyList(pList); //判断链表是否为空链表

posElem = getElement(pList,3); //获取第三个元素,如果元素不足3个,则返回0
printf(“getElement函数执行,位置 3 中的元素为 %d\n”,posElem);
printList(pList);

getElemAddr(pList,5); //获得元素5的地址

modifyElem(pList,4,1); //将链表中位置4上的元素修改为1
printList(pList);

insertHeadList(&pList,5); //表头插入元素12
printList(pList);

insertLastList(&pList,10); //表尾插入元素10
printList(pList);

clearList(pList); //清空链表
system(“pause”);

}

发表评论

电子邮件地址不会被公开。 必填项已用*标注